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Water vapor feedback

Validation

e Understanding the variability and response of Earth's radiation budget to
perturbations requires isolating each component of atmosphere’s contribution to the

energy budget.
e Mostly motivated by the need evaluate feedbacks in GCMs
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Datasets Validation

e Understanding the variability and response of Earth's radiation budget to
perturbations requires isolating each component of atmosphere’s contribution to the

energy budget.
e Mostly motivated by the need evaluate feedbacks in GCMs

@ Partial radiative perturbation (PRP) calculations: calculations that substitutes
one-at-a-time a variable from the perturb climate into the control climate.
(Wetherald and Manabe 1988)
@® Radiative kernels: separates the radiative response and the perturbations
(Held and Soden 2000; Soden and Held 2006; Soden et al. 2008)
e Fewer computations: a single radiative calculation can be consistently applied across

different climate models.
e Radiative kernel have become an indispensable tool for GCM feedback studies
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Datasets Validation

Observed radiative perturbations

o GCM-derived radiative kernels also been applied to observations in attempt to
Constrain Climate feed baCkS (Dessler 2008, 2010, 2013; Dessler and Wong 2009; Masters 2012; Dessler and Loeb 2013;
Gordon et al. 2013, Zhou et al. 2013, 2014; Ceppi 2016)

o Not yet clear how feedbacks in the current climate relate to those under a long-term
global warming scenario

(Trenberth et al. 2010; Dessler 2010, 2013; Chung et al. 2012; Gordon et al. 2013; Zhou et al. 2015)
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o Not yet clear how feedbacks in the current climate relate to those under a long-term
global warming scenario
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e But, there is a concerted effort to determine how observations can best be used to
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Validation

Observed radiative perturbations

GCM-derived radiative kernels also been applied to observations in attempt to
Constrain Climate feed baCkS (Dessler 2008, 2010, 2013; Dessler and Wong 2009; Masters 2012; Dessler and Loeb 2013;

Gordon et al. 2013, Zhou et al. 2013, 2014; Ceppi 2016)

Not yet clear how feedbacks in the current climate relate to those under a long-term
global warming scenario

(Trenberth et al. 2010; Dessler 2010, 2013; Chung et al. 2012; Gordon et al. 2013; Zhou et al. 2015)

But, there is a concerted effort to determine how observations can best be used to
understand climate feedbacks and sensitivity (Loeb et al. 2016; Forster 2016)

Limited comparisons of GCM vs. observational-based kernels
(different GCM kernels show relatively small differences)

Would be attractive to perform calculations based purely on observations
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Validation

Dataset that computes the individual contributions to radiative flux variability
using observational datasets
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Datasets Validation

Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Applications:

e Examine feedbacks in the observational record within a consistent framework and
construct observationally-based radiative kernels
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Datasets Validation Water vapor feedback Summar

Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Applications:

e Examine feedbacks in the observational record within a consistent framework and
construct observationally-based radiative kernels

e Provide general insight into the variability of the radiation budget
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Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Applications:

e Examine feedbacks in the observational record within a consistent framework and
construct observationally-based radiative kernels

e Provide general insight into the variability of the radiation budget
o Useful where radiative effects are correlated among parameters.

e E.g. clouds: compliment to the cloud radiative effect (CRE, total - clear-sky fluxes)
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Datasets Validation

Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Design:

e “On-demand” processing to allow for the flexible calculation of flux perturbations
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Datasets Validation er vapor feedback

Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Design:
e “On-demand” processing to allow for the flexible calculation of flux perturbations

e Perturb any combination of variables (e.g. water vapor, clouds) and specific variable
dimensions (e.g. pressure level)
o Select resulting (spectral) flux perturbations from any level of the atmosphere
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Datasets Validation er vapor feedback

Dataset that computes the individual contributions to radiative flux variability
using observational datasets

Design:
e “On-demand” processing to allow for the flexible calculation of flux perturbations

e Perturb any combination of variables (e.g. water vapor, clouds) and specific variable
dimensions (e.g. pressure level)
o Select resulting (spectral) flux perturbations from any level of the atmosphere

e Easy to incorporate multiple datasets for each input

PRP and water vapor feedback (5/12)
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PRP calculations

OFL, = F(x,y1, ..., yn) — F(X, ¥1, .- YN) (1)

e Flux (F) difference of monthly means (x,y) and climatological monthly means (x,y)
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Summar

PRP calculations

OFL, = F(x,y1, ..., yn) — F(X, ¥1, .- YN) (1)

e Flux (F) difference of monthly means (x,y) and climatological monthly means (x,y)

Can also compute the same thing relative to a different base state:

OFR. = F(X, Y1, .., ¥N) — F(X, V1, .-, ) (2)
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Summar

PRP calculations

OFfy = F(x,y1, s yn) — F(X, y1, ooy yn) + O (Ax) (1)

e Flux (F) difference of monthly means (x,y) and climatological monthly means (X,y)

Can also compute the same thing relative to a different base state:

OFR = F(x, Y1, ... yn) — F(X, V1, .., ¥n) + O°(Ax) (2)

e O(Ax)/OP(Ax): truncation error
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Validation Wate Summar

PRP calculations
OFL, = F(x,y1, ., yn) — F(R, ¥1, ..., yn) + O (Ax) (1)
e Flux (F) difference of monthly means (x,y) and climatological monthly means (X,y)
Can also compute the same thing relative to a different base state:

OFR = F(x, Y1, ... yn) — F(X, V1, .., ¥n) + O°(Ax) (2)

e O(Ax)/OP(Ax): truncation error

Reduce error by averaging the forwards (f) and backwards (b) difference

OFL, + OFR,

5+ 0(8x) (3)

OFax =
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Validation

PRP calculations

8F£X - F(Xa)/L ~--7_yl\l) - F(ZYL "'7.)//\/) + Of(AX) (1)

e Flux (F) difference of monthly means (x,y) and climatological monthly means (X,y)

Can also compute the same thing relative to a different base state:

OFRx = FO, V1. .. 70) = F(X V1, o ) + O°(Lx) (2)

e Of(Ax)/0OP(Ax): truncation error

Reduce error by averaging the forwards (f) and backwards (b) difference

OFf + OFk

. + 0(AX?) (3)

OFax =

e From monthly-mean inputs, climatologies are constructed and the variables
combined to make the 4 sets of inputs — Fu-Liou radiative model

PRP and water vapor feedback (6/12)



Intro Datasets Validation

Inputs (mostly) from CERES datasets

e Clear-sky: GEOS | AIRS (AIRX35TM)

temperature, water vapor, ozone, skin temperature

e Clouds: SYN | C3M

fraction, base, top, phase, optical depth, size

e Aerosol: MATCH

optical depth, vertical distribution, type

o Gases: AIRS (AIRS3C2M/AIRX3STM)

carbon dioxide, methane

e Gases: NOAA ESRL (global means)
nitrous oxide, CFC-11, CFC-12, HCFC-22

e Surface albedo: SAH

parameterization spectral dependence

o Surface emissivity: IGBP LUT
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Datasets

Inputs (mostly) from CERES datasets

Clear-sky:
» GEOS = GMAQO assimilation (v5.4.1)
(3hr)

» AIRS = Atmospheric Infrared Sounder
L3 product (v6)

e Clear-sky: GEOS | AIRS (AIRX35TM)

temperature, water vapor, ozone, skin temperature

e Clouds: SYN | C3M

fraction, base, top, phase, optical depth, size
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Datasets Validation Water vapor feedback Summary

Inputs (mostly) from CERES datasets

Clear-sky:
» GEOS = GMAQO assimilation (v5.4.1)
(3hr)

» AIRS = Atmospheric Infrared Sounder
L3 product (v6)

e Clear-sky: GEOS | AIRS (AIRX35TM)

temperature, water vapor, ozone, skin temperature

e Clouds: SYN | C3M

fraction, base, top, phase, optical depth, size

Clouds:
. > SYN = MODIS + GEO (3 hr)
» C3M = CERES CALIPSO CloudSat
MODIS (coming soon)
[ ]
°
[ ]
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Datasets Validation Water vapor feedback Summary

Inputs (mostly) from CERES datasets

Clear-sky:
» GEOS = GMAQO assimilation (v5.4.1)
(3hr)

» AIRS = Atmospheric Infrared Sounder
L3 product (v6)

e Clear-sky: GEOS | AIRS (AIRX35TM)

temperature, water vapor, ozone, skin temperature

e Clouds: SYN | C3M

fraction, base, top, phase, optical depth, size

Clouds:
. » SYN = MODIS + GEO (3 hr)
» C3M = CERES CALIPSO CloudSat
MODIS (coming soon)
[ ]
* Focus here on 13 years of
SYN + GEOS/AIRS
® (Sept. 2002 — Aug. 2015)
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Validation Water vapor feedback Summar

Validation
® Perturbations add linearly: AF = F(y1,...,yn) — F(71, -, YN) = D1y OF ax
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Validation

® Perturbations add linearly: AF = F(y1,...,yn) — F(71, -, YN) = D1y OF ax
® Reasonably accurate to use of monthly mean inputs
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Validation Water vapor feedback Summar

Validation

® Perturbations add linearly: AF = F(y1,...,yn) — F(71, -, YN) = D1y OF ax
® Reasonably accurate to use of monthly mean inputs

o Fluxes from monthly-mean inputs vs. monthly average of fluxes
e Global-mean bias = -0.6, -1.8 W /m? (SW, LW)

PRP and water vapor feedback (8/12)



Validation ter va c Summar

Validation
® Perturbations add linearly: AF = F(y1,...,yn) — F(71, -, YN) = D1y OF ax
® Reasonably accurate to use of monthly mean inputs

o Fluxes from monthly-mean inputs vs. monthly average of fluxes
e Global-mean bias = -0.6, -1.8 W /m? (SW, LW)

o Similar agreement to CERES fluxes
e Global-mean bias = +0.8, -3.6 W /m? (SW, LW)
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Validation ck Summar

Validation
® Perturbations add linearly: AF = F(y1,...,yn) — F(71, -, YN) = D1y OF ax
® Reasonably accurate to use of monthly mean inputs

o Fluxes from monthly-mean inputs vs. monthly average of fluxes
e Global-mean bias = -0.6, -1.8 W /m? (SW, LW)

o Similar agreement to CERES fluxes
e Global-mean bias = +0.8, -3.6 W /m? (SW, LW)

® Reproduce the variability as observed by CERES
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Validation

Validation
® Perturbations add linearly: AF = F(y1,...,yn) — F(7a, ...
® Reasonably accurate to use of monthly mean inputs

o Fluxes from monthly-mean inputs vs. monthly average of fluxes
e Global-mean bias = -0.6, -1.8 W /m? (SW, LW)

o Similar agreement to CERES fluxes
e Global-mean bias = +0.8, -3.6 W /m? (SW, LW)

® Reproduce the variability as observed by CERES %

e Time series well correlated over much of the globe 75
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Water vapor feedback

Observed water vapor feedback
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Water vapor feedback Summary

Observed water vapor feedback

Feedback Uncertainty Dataset

Forster and Collins (2004) 1.6 0.9-2.5 NVAP, MLS
Dessler et al. (2008) 2.04 0.94-2.69 AIRS

1.35 +0.35 ERA-Interim
Dessler (2013) 1.12 +0.39 MERRA
Gordon et al. (2013) 2.19 +0.38 AIRS

e Somewhat similar values (when uncertainties are considered)
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Water vapor feedback

Observed water vapor feedback

Feedback Uncertainty Dataset
Forster and Collins (2004) 1.6 0.9-2.5 NVAP, MLS
Dessler et al. (2008) 2.04 0.94-2.69 AIRS

1.35 +0.35 ERA-Interim
Dessler (2013) 1.12 +0.39 MERRA
Gordon et al. (2013) 2.19 +0.38 AIRS

e Somewhat similar values (when uncertainties are considered)

Revisit this estimate with our PRP calculations, longer datasets (13 yrs), and

more surface temperature datasets
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Water vapor feedback Summary

Observed water vapor feedback

Feedback Uncertainty Dataset

Forster and Collins (2004) 1.6 0.9-2.5 NVAP, MLS
Dessler et al. (2008) 2.04 0.94-2.69 AIRS

1.35 +0.35 ERA-Interim
Dessler (2013) 1.12 +0.39 MERRA
Gordon et al. (2013) 2.19 +0.38 AIRS

e Somewhat similar values (when uncertainties are considered)

Revisit this estimate with our PRP calculations, longer datasets (13 yrs), and
more surface temperature datasets

e Compute monthly perturbation to TOA flux caused by tropospheric water vapor: AF

o Feedback = slope of least-squares fit of AF and surface temperature anomaly
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Validatio Water vapor feedback

Observed water vapor feedback

NET, total-sky

GEOS AIRS
2.5 T 2.5 T
2.0 4 20} -
<
>
51.5 - 4 15} -
E i
1.0 | 4 10} { { B
0.5 L 0.5 L
PRP PRP

[GEOS/AIRS HadCRUT4 GISTEM P]
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Validation Water vapor feedback Summar

Observed water vapor feedback

GEOS NET, total-sky
2.5 T 2.5 T
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o AIRS feedback is generally smaller
o AIRS is “tighter”: less sensitivity to T dataset and better fits
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Datasets Validation

Water vapor feedback Summar

Observed water vapor feedback

NET, total-sky

GEOS AIRS
2.5 : 2.5 ,
[ )
20} 4 2.0% 4
<
=
L15f 4 15} 1
= ¢
; ; ot
1.0 { 4 10} { 4
0.5 ' 0.5 .
PRP PRP
[GEOS/AIRS HadCRUT4 GISTEMP]

AIRS feedback is generally smaller

AIRS is "tighter”: less sensitivity to T dataset and better fits
GEOS in agreement with previous reanalysis estimates
AIRS feedback nearly half that of previous estimates

e D08/G13: different period of data, older versions of datasets, kernels for getting AF
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Water vapor feedback

Observed water vapor feedback: Gordon et al. period Sept. 2002 — Dec. 2009
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Water vapor feedback

Observed water vapor feedback: Gordon et al. period Sept. 2002 — Dec. 2009

NET, total-sky

AIRS
2.5 :
12
2.0} .
15} .
(@)
0.5 L
PRP
(AIRSV5/AIRS HadCRUT4 GISTEMP)

o AIRSv6 feedback smaller than full time series
e HadCRUT3 give largest feedback
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Water vapor feedback Summar

Observed water vapor feedback: Gordon et al. period Sept. 2002 — Dec. 2009

NET, total-sky

AIRSV5 AIRS
2.5 : 2.5 .
12 12
20} 4 20} -
(@]
X
T151 4 15} g
N 0
0.5 ' l 0.5 '
PRP PRP
[AIRSVS/AIRS HadCRUT4 GISTEMP]

o AIRSv6 feedback smaller than full time series
e HadCRUT3 give largest feedback
o AIRSV5 4+ HadCRUT3 = largest feedback
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Datasets /alidatio Water vapor feedback Summar

Observed water vapor feedback: Gordon et al. period Sept. 2002 — Dec. 2009

NET, total-sky

AIRSV5 AIRS
2.5 . . 2.5 . .
¢ A ¢
20 4 20} 4
(@]
X
L15) 4 15} A .
N fe)
l l l 05 l l
PRP NCAR PRP NCAR
[AIRSVS/AIRS HadCRUT4 GISTEMP]

AIRSVv6 feedback smaller than full time series
HadCRUT3 give largest feedback

AIRSV5 + HadCRUT3 = largest feedback
AIRSv5 + HadCRUT3 4+ NCAR kernel (Shell et al. 2008) ~ G13
o AIRSv6/HadCRUT4 increase yield /coverage
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Intro Da s Validation

Summary

e Development of dataset that allows for flexible PRP calculations to isolate the
contributions to radiative flux variability using observational datasets
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Datasets Validation Water vapor feedback

Summary

e Development of dataset that allows for flexible PRP calculations to isolate the
contributions to radiative flux variability using observational datasets

e Examine feedbacks in the observational record within a consistent framework and
construct observationally-based radiative kernels
e Provide general insight into the variability of the radiation budget
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Summary

e Development of dataset that allows for flexible PRP calculations to isolate the
contributions to radiative flux variability using observational datasets

e Examine feedbacks in the observational record within a consistent framework and
construct observationally-based radiative kernels
e Provide general insight into the variability of the radiation budget

o Reasonably accurate to use monthy mean inputs, good correlation with CERES
anomalies
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Datasets Validation Water vapor feedback

Summary

e Development of dataset that allows for flexible PRP calculations to isolate the
contributions to radiative flux variability using observational datasets
e Examine feedbacks in the observational record within a consistent framework and

construct observationally-based radiative kernels
e Provide general insight into the variability of the radiation budget

o Reasonably accurate to use monthy mean inputs, good correlation with CERES
anomalies

e Revisited the observed water vapor feedback

e GEOS: 1.21 + 0.25 W/m?/K
e AIRS: 1.10 + 0.18 W/m?/K
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Datasets Validation Water vapor feedback

Summary

e Development of dataset that allows for flexible PRP calculations to isolate the
contributions to radiative flux variability using observational datasets
e Examine feedbacks in the observational record within a consistent framework and

construct observationally-based radiative kernels
e Provide general insight into the variability of the radiation budget

o Reasonably accurate to use monthy mean inputs, good correlation with CERES
anomalies
e Revisited the observed water vapor feedback
e GEOS: 1.21 + 0.25 W/m?/K
e AIRS: 1.10 +0.18 W/m2/K
o Older water vapor feedback estimates using AIRSv5 + HadCRUT3 nearly 2x larger:
mostly due to dataset updates (also differences from kernel, length of data)

PRP and water vapor feedback (12/12)
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Datasets Validation Water vapor feedback

Looking forward:
e AIRS v6.1: overhaul of water vapor retrievals

e Interesting to perform calculations with active sensor clouds (C3M)
(likely to decrease water vapor feedback a bit)

o CERES-optimized radiative kernels: "“two-pass” calculation to require that the sum
of individual flux anomalies match CERES
(similar to Sanderson and Shell 2012)
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Intro

Use of monthly mean inputs
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Summary

Use of monthly mean inputs

. TOA total LW up
PRP_Month [W/m?]

A flux [W/m?]
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Comparison to CERES (EBAF)
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Validatiol

Comparison to NCAR kernel

NET, total-sky

Water vapor feedback

AIRSV5 AIRS
2.5 , , 2.5 , :
A
20} 20} §
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151 1.5} A §
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1.0 -E 1.0 -+ { + }-
l l l l l
PRP NCAR PRP NCAR

[AIRSVS/AIRS

HadCRUT4 G\STEMP]

e Using NCAR kernel give a (slightly) larger feedback

o Kernel differences: (not shown)
e Zonal / vertical means: ~ 10%

(about the same as among different GCMs (soden et al. 2008))

o Local differences: ~ 20-40%

(larger than among different GCMs (Soden et al. 2008))
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Comparison to NCAR kernel (sheiet ai. 200s)
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Short vs. Long-term water vapor feedback

e Gordon et al. (2013): short-term feedbacks in CMIP3 models converge to 15% of
their long-term value after 25 years
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